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An equation has been derived for the prediction of the Poisson’s ratio of porous materials
having ribbon like pores. The equation fits the data of silica gel with ribbon like pores quite
well for the whole range of porosity. For spherical pores, a relation derived by previous
researchers showed an anomalous variation in Poisson’s ratio with porosity. It has been
shown that it was due to the mathematical form of the function chosen to describe the
relation between the bulk and Young’s moduli with porosity. In this analysis, a modified
form of the function to describe Young’s and bulk modulus with porosity has been
suggested for spherical pores. The derived relation for variation of Poisson’s ratio with
porosity shows good agreement with the prediction by self consistent theory.
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Many engineering materials, such as, ceramics, com-
posites and metals sintered from powder compacts are
inherently porous, with a wide variety and distribution
of pore sizes and shapes depending on the synthesis
route adopted in material preparation. Estimation of
the effective elastic moduli of such materials charac-
terized by microscopic heterogeneity in pore shapes
and sizes has been a matter of considerable interest for
several decades. Experimental studies, based on ultra-
sonic longitudinal and shear wave measurements have
been conducted for porous materials for estimation of
the Young’s modulus and shear modulus as functions
of the average porosity (P) determined from the ra-
tio of the bulk density to the theoretical density of the
material [1–7]. The resulting data have yielded semi-
analytical expressions for prediction of the effective
moduli [7–10]. More fundamental predictions of these
moduli have also been attempted from micromechan-
ical theories by several researchers [11–18]. Distinc-
tions have been made between spherical pores [11–18]
and non-spherical pores [19–22] to derive various pre-
dictive models. Among the elastic moduli, the impor-
tance of the Poisson’s ratio for structural calculations
cannot be overemphasized. For example, in the analysis
of bonded dissimilar materials, a mismatch in Poisson’s
ratio can give rise to singular stress fields [15]. In the
earth sciences too, the sensitivity of the Poisson’s ratio
to pore structure has been recognized as an effective
tool for studying the latter [23, 24]. However, in com-
parison with the effective Young’s modulus (Ee) and
the effective bulk modulus (Ke), less attention has been
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paid to the prediction of the effective Poisson’s ratio
(νe) for porous materials [15, 17, 18, 25]. Researchers
are divided on the issue whether Poisson’s ratio is a
function of porosity of materials. While some declare
νe as constant [26], others claim it to be a function of
porosity [15, 17, 18, 25]. Such debates possibly arise
out of the fact that the Poisson’s ratio is usually derived
as a function of Ee and Ke whose relative dependence
on porosity may accentuate or dampen the dependence
of νe on P. Previous investigations on this issue, es-
pecially that of Arnold et al. [25] have been far from
conclusive. It is worthwhile to present the salient fea-
tures of the Arnold’s model which merit closer scrutiny.
Arnold et al. [25] have observed that the Poisson’s ratio
(νe) versus porosity (P) relation is concave downward
upto a P value of 0.4 and is convex upward above this
value. This is clearly depicted in Fig. 1. It shows a dis-
tinct point of inflexion at P = 0.4 with a sharp kink.
From Fig. 1, we can further infer that the experimen-
tal data of Ashkin et al. [4], with which Arnold et al.
[25] compared their theoretical prediction, do not in-
dicate such a trend, except at porosity higher than 0.5.
Arnold et al. [25] have also not offered any physical
explanation to the peculiar nature of their theoretical
curve in Fig. 1 and chose to offer the validity of their
analysis as “a challenge”. In fact, a close look at the
analysis of Arnold et al. [25] reveals the following
anomalies:

1. The data of Ashkin et al. [4] is for colloidal
gel derived silica having ribbon like pore structure,
as reported by the authors, whereas the analysis of
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Figure 1 Variation of the Poisson’s ratio of porous gel-derived silica
with porosity.

Arnold et al. [25] is for spherical pores. Such an effort
implicitly assumes that porosity is the only variable re-
quired for describing the relation of the variation of the
elastic properties, such as, Poisson’s ratio. It is well es-
tablished now that besides porosity, the pore structure
is an important parameter for predicting the variation
of the elastic properties [8, 9, 27].

2. While analyzing the bulk modulus data of glass
with spherical pores reported by Walsh et al. [30],
Arnold et al. [25] attempted a blending of two
Equations 5 and 6, presented in the next section, with a
sigmoidal function, s. The resulting Equation 8 shows
an abrupt change in the slope of the curve at a porosity
level of 0.4 which cannot be described by any physical
phenomena. Fig. 2 brings about this issue quite clearly.
Since this sigmoidal function appears at the denomi-
nator of the relation for the variation of Poisson’s ratio
with porosity derived by Arnold et al. [25], it can be
argued that this function may have contributed to the
kink shown in Fig. 1 at P = 0.4.

Figure 2 Variation of the bulk modulus with porosity for glass.

Figure 3 Variation of the relative Young’s modulus with porosity for
gel derived silica.

3. While comparing the data of Ashkin et al. [4] with
the theoretical predictions, Arnold et al. [25] implic-
itly assumed that Equation 10 describes the variation
of Young’s modulus in materials with spherical pores.
However, it fails to fit the data of Young’s modulus ver-
sus porosity reported by Ashkin et al. [4], as shown in
Fig. 3. This goes to confirm, yet again, the inadequacy
in the analysis of Arnold et al. [25].

The primary objectives of this paper are twofold—
firstly, to find a Poisson’s ratio versus porosity relation
taking into account the ribbon like pore shape for the
data of Ashkin et al. [4] and secondly, to examine math-
ematically, the nature of variation of the νe versus P for
spherical pores.

2. Prediction of Poisson’s ratio for materials
with ribbon like pores

The effective Poisson’s ratio is related to the two elastic
moduli, Ee and Ke as follows:

ve = 0.5 − Ee

6Ke
(1)

It is imperative that suitable expressions for Ee and
Ke be first constructed for ribbon like pore structure,
before deriving the relation for νe versus P. For this
purpose, we used the data reported by Ashkin et al.
[4] for Young’s modulus variation for porosity. Ashkin
et al. [4] studied the change in elastic moduli with
porosity for gel-derived porous silica sintered from a
relative density of 0.15 to full density. The gels were
made from colloidal silica, potassium soluble silicate
and formamide and the gel structure was varied by
changing the ratio of weight percentages of colloidal
silica to potassium soluble silicate from 5:95 to 25:75.
Further details of their experimental study can be found
in [4]. They fitted their data to the relation of Young’s
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modulus derived by Nielsen [13]:

Relative modulus {E/E0, K/K0 or G/G0}

= (1 − P)2

/[
1 +

(
1

b
− 1

)
P

]
(2)

where b is a term related to the pore morphology.
Ashkin et al. [4] obtained the best fit of the measured
Young’s modulus data with the theoretical prediction
from Equation 2 for b = 0.4. Fig. 3 depicts the quality
of fit of these data against the solid line drawn using
Equation 2 with b = 0.4 which pertains to ribbon like
pore structure.

To derive the Poisson’s ratio versus porosity relation,
data for bulk modulus of silica samples with similar
pore structures are required. Unfortunately, bulk mod-
ulus data were not reported by Ashkin et al. [4]. For
this we used the data reported by Adachi and Sakka
[3] for silica gel prepared by the sol-gel method from a
tetramethoxysilane solution, where porosity varied in
the range from 0 to 0.726. The details of their exper-
imental work is reported in [3]. In their work, Adachi
and Sakka [3] tabulated the Young’s modulus, shear
modulus and bulk modulus data estimated from the
longitudinal and transverse velocities of sound wave
measured from the resonance of vibrating cubic sam-
ples as per Goto and Soga’s technique [37]. Before
using these data, it is necessary to check that this ma-
terial has similar pore structure with that of Ashkin
et al. [4]. To verify the same, we plotted their Young’s
modulus data in Fig. 3. The data closely followed the
curve predicted by Ashkin et al. [4] based on Equation 2
with b = 0.4 over the whole range of porosity. Thus it
will be reasonable to assume that the material used by
Adachi and Sakka [3] had similar pore structure as that
of Ashkin et al. [4] and their bulk modulus data can be
used for the analysis of Equation 1. The bulk modulus
data of Adachi and Sakka [3] are shown in Fig. 4. The
data were again fitted to Equation 2 which yielded a
value of b = 0.476.

Combining Equations 1 and 2, we obtain the follow-
ing relation describing variation of effective Poisson’s
ration with porosity for ribbon shaped pores:

ve = 0.5 − 3(1 − 2v0)[1 + 1.5P]

1 + 1.1P
(3)

A plot of Equation 3 for ν0 = 0.163 for silica [4]
is shown in Fig. 5 along with the data of Ashkin
et al. [4]. Also shown in the plot are the Poisson’s ratio
values calculated from the elastic and shear modulus
data reported in Adachi et al. [3]. As can be seen from
Fig. 5, the predicted values show reasonable agree-
ment with the data, having the maximum deviation of
+20% from the predicted value. Considering the fact
that the Poisson’s ratio is more sensitive to the error
of measurements, this deviation is within reasonable
limits. Also the trend predicted by the above equation
agrees with the observation by Ashkin et al. [4] that, for
their material, Poisson’s ratio increases with increase
in porosity. The nature of the variation predicted by
Equation 3 is also in qualitative agreement with the

Figure 4 Variation of the relative bulk modulus with porosity for gel
derived silica.

Figure 5 Variation of the Poisson’s ration with porosity for nonspherical
pores.

variation predicted by the self-consistent theoretical
analysis of Dunn and Ledbetter [15] for needle shape
pores given by the following equation, as shown in
Fig. 5:

ve = −15v0 + P(8v0 − 5)(v0 + 1)

−15 + 4P(4v0 − 5)(v0 + 1)
(4)

3. Prediction of Poisson’s ratio for materials
with spherical pores

For analysis of data for spherical pores, we again need
the experimental data of Young’s modulus and bulk
modulus of materials having spherical pores. Arnold
et al. [22], in their analysis have used the data reported
by Walsh et al. [30] for glass (54.4 wt% SiO2, 14.4 wt%
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B2O3, 14.1 wt% CaO, 10 wt% Al2O3, 6.5 wt% Na2O
and 0.7 wt% K2O) with spherical pores having ν0 =
0.23. Arnold et al. [25] analysed these data in terms
of two equations. For low concentration of spherical
pores, they adopted the equation derived by Ondracek
[28, 29]:

K P,1 = K0
2(1 − 2ν0)(3 − 5P)(1 − P)

2(3 − 5P)(1 − 2ν0) + 3P(1 + ν0)
(5)

For high porosity range, they used the the expression
derived by Walsh et al. [30]:

K P,2 = K0
2(1 − 2ν0)(1 − P)

3(1 − ν0)
(6)

They then combined these two equations by:

K P = (1 − s)K P,1 + sK P,2 (7)

where s is the sigmoidal function given by

s = 1

1 + exp{−100(P − 0.4)} (8)

The variation of bulk modulus with porosity as per
Equation 7 is shown in Fig. 2 for two values of Pois-
son’s ratio, ν0 = 0.1 and ν0 = 0.23. The curve drawn
by Arnold et al. (Fig. 3 in [25]) was possibly drawn for
ν0 = 0.1 which was not explicitly mentioned by them.
The curve was also possibly smoothened as shown by
dotted line in Fig. 2. For the correct magnitude of ν0

= 0.23, the plot is drawn in dashed line in Fig. 2 and
fits the data of Walsh et al. [30] rather poorly. The
plot also reveals two distinct regimes with negative
slopes—before and after the porosity value of 0.4, per-
taining to Equations 5 and 6, respectively. Near the
porosity value of 0.4, the blending of these equations is
not sufficiently smooth and shows an abrupt change in
continuity, which is clearly brought about by plotting
the first derivative of the relative bulk modulus with re-
spect to porosity. This plot is shown in the inset of Fig. 2
for porosity values ranging from 0.2 to 0.5. From the
physical point of view, it is unlikely that the modulus
versus porosity curve will show such inflexions in the
slope over the entire porosity range. This possibly arises
due to form of the function, s, given by Equation 8.
Incidentally, the kink in the Poisson’s ratio-porosity
curve in Fig. 1 corresponds to this porosity range
only.

To verify the same, the Equations 5 and 6 were
blended with a polynomial function of the first order,
of the form:

K P = (a P + b)K P,1 + (cP + d)K P,2 (9)

The parameters a, b, c and d of the above equation
were obtained by least square regression analysis by
fitting the equation to the bulk modulus data with addi-
tional conditions that at p = 0, K/K0 = 1 and at p = 1,
K/K0 = 0. The fitted equation is shown in Fig. 6 with

Figure 6 Variation of the relative bulk modulus with porosity for glass
with spherical pores.

values of a = −0.24, b = 0.019, c = −1.54 and d =
1.85.

For Young’s modulus variation with porosity, Arnold
et al. [25] assumed the equation derived by Boccacini
et al. [31]:

E = E0(1 − P2/3)1.21 (10)

Therefore Equation 1 yields:

ν0 = 0.5 − 3(1 − 2ν0)(1 − P2/3)1.21

6[(−0.24P + 0.019)K P,1 + (−1.54P + 1.85)K P,2]

(11)

This equation is plotted in Fig. 7 as the dotted line
for ν0 = 0.163. It can be seen from the figure, that the
Poisson’s ratio variation is now concave downwards
upto a porosity of about 0.6 and then convex upwards
approaching the value of 0.5 asymptotically. No kink
appears in the curve as shown in Fig. 4 at P = 0.4,
thus indicating that the nature of the curve shown in
Fig. 1 possibly arises due to the form of Equation 7.
The concave and convex variations in the Poisson’s
ratio with porosity in Fig. 1 possibly arise out of the
competing slopes of the derivative of the Young’s mod-
ulus and the bulk modulus with respect to porosity. It
may be noted that Equation 10 shows that the Young’s
modulus approaches the zero porosity value asymp-
totically. At low values of P, d(E/E0)/dP has a very
high negative slope, whereas for d(K/K0)/dP shows a
smoothly varying negative slope for the whole range of
porosity.

To investigate the effect of the Equation 10 on the
variation of Poisson’s ratio with porosity, we need to
again analyze the experimental data of materials with
spherical pores. Unfortunately, Walsh et al. [30] have
not reported the Young’s modulus data for their mate-
rial. On the other hand, Ishai et al. [37] have reported
the elastic modulus variation with porosity for epoxy
resin with spherical pores upto a porosity of 0.72. These
data are shown in Fig. 8, along with the curve for
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Figure 7 Variation of Poisson’s ratio with porosity for spherical pores.

Figure 8 Variation of relative Young’s modulus with porosity for epoxy
resin with spherical pores.

Equation 10. It can be seen that Equation 10 fits the
data well above porosity value of 0.3, whereas below
0.3 the fit is poor. Also plotted in the same figure, the
curve for Equation 2 with b = 1 for spherical pores. The
Equation 2 shows excellent agreement over the entire
range of data. Thus using this equation, the Poisson’s
ratio versus porosity relation becomes:

ν0 = 0.5 − 3(1 − 2ν0)(1 − P2)

6[(a P + b)K P,1 + (cP + d)K P,2]

(12)

This relation is also plotted for ν0 = 0.163 in Fig. 7,
which indicates that the variation of Poisson’s ratio with
porosity is almost constant upto a porosity value of 0.3
and then monotonically increases to a value of 0.5.
Incidentally, it may be mentioned here that the bulk

modulus variation can also be described by Equation 2
with b = 1 (see Fig. 6). In that case, the Poisson’s ra-
tio remains constant with porosity. However, due to a
lack of experimental data for Poisson’s ratio of mate-
rials with spherical pores, it is difficult to verify which
of these curves will describe the actual behaviour of
the material. It will be of academic interest to compare
these predictions with self-consistent theory which has
been shown to describe the Poisson’s ratio of porous
material upto a porosity of 0.3 quite well [8]. The
relation between the Poisson’s ratio and porosity for
spherical pore is given by the self-consistent theory as
follows:

νe = 2ν0(5ν0 − 7) + P(5ν0 − 3)(ν0 + 1)

2(5ν0 − 7) + P(15ν0 − 13)(ν0 + 1)
(13)

This is shown, again, in Fig. 7, for ν0 = 0.163. It can
be seen that upto a porosity of 0.3, Equations 12 and
13 agree quite well with each other. It can be seen from
this figure, that the data of Ashkin et al. [4] for ribbon
like pores, also fall very close to the theoretical curves
predicted by Equations 11 and 12 for low porosity val-
ues. This may not be surprising, given the fact that the
pores of silica gel at low concentrations, would tend to
be closed and spherical in shape.

4. Conclusion
An equation has been derived for calculating Poisson’s
ratio of porous materials containing ribbon like pore
structure. The experimental data shows fairly good
agreement with that of the theoretical predictions. For
spherical pores, it has been shown that the general na-
ture of the theoretical variation of Poisson’s ratio with
porosity is dependent on the mathematical form of the
equation chosen for describing the bulk and elastic
moduli for the entire range of porosity. The exact nature
of the theoretical variation could not be ascertained be-
cause of the lack of experimental data of the Poisson’s
ratio for materials having spherical pores. However, the
theoretical predictions do not indicate any sharp transi-
tion in the Poisson’s ratio versus porosity as predicted
by Arnold et al. [25].
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